On the multi-scale description of electrical conducting suspensions involving perfectly dispersed rods

نویسندگان

  • Marta Pérez
  • Emmanuelle Abisset-Chavanne
  • Anais Barasinski
  • Francisco Chinesta
  • Amine Ammar
  • Roland Keunings
چکیده

Background Nanocomposites composed of carbon nanotubes (CNTs) in a polymer matrix exhibit a significant enhancement of electrical conductivity, mechanical and thermal properties [1, 2]. Due to the large length to diameter aspect ratios (from 100 to 10,000), they create conducting networks at low volume fractions [3]. In many forming processes (injection, extrusion, among many others), however, the CNT flow-induced orientation can alter dramatically the effective properties [4]. Moreover, the flow can induce aggregation and disaggregation mechanisms that also affect the final properties of the processed part [5]. It is well known that extrusion [6] and injection processes [7] can in some cases cause a conducting-to-insulating transition. An important goal is to develop robust processes that maximize both electrical conductivity and mechanical properties, which asks for a suitable compromise in terms of flow-induced microstructure. There are many works focusing on the effects of shear Abstract

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depletion-interaction effects on the tunneling conductivity of nanorod suspensions.

We study by simulation and theory how the addition of insulating spherical particles affects the conductivity of fluids of conducting rods, modeled by spherocylinders. The electrical connections are implemented as tunneling processes, leading to a more detailed and realistic description than a discontinuous percolation approach. We find that the spheres enhance the tunneling conductivity for a ...

متن کامل

Kinetic Theory Microstructure Modeling in Concentrated Suspensions

When suspensions involving rigid rods become too concentrated, standard dilute theories fail to describe their behavior. Rich microstructures involving complex clusters are observed, and no model allows describing its kinematics and rheological effects. In previous works the authors propose a first attempt to describe such clusters from a micromechanical model, but neither its validity nor the ...

متن کامل

From Single-Scale to Two-Scales Kinetic Theory Descriptions of Rods Suspensions

This paper proposes a first attempt to define a two-scales kinetic theory description of suspensions involving short fibers, nano-fibers or nanotubes. We start revisiting the description of dilute enough suspensions for which microscopic, mesoscopic and macroscopic descriptions are available and all them have been successfully applied for describing the rheology of such suspensions. When the su...

متن کامل

Design of a Photonic Bandgap Fiber with Optimized Parameters to Achieve Ultra-Low Confinement Loss

In this paper, a novel design of all-solid photonic bandgap fiber with ultra-low confinement loss is proposed. The confinement loss is reduced remarkably by managing the number of rods rings, up-doping level, pitch value, and rods diameters. Moreover, the designed PCF shows ultra-flattened dispersion in L- and U-band. Furthermore, a new design, based on introducing of an extra ring of air h...

متن کامل

Depletion potentials induced by charged colloidal rods.

We present direct depletion potential measurements for a single colloidal sphere close to a wall in suspensions of charged colloidal rods. In contrast to earlier studies of purely entropic systems (Helden et al. Phys. Rev. Lett. 2003, 90, 048301), here electrostatic interactions are important. These enhance the depletion attraction and lead to repulsive parts in the interaction potentials, indi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Model. and Simul. in Eng. Sciences

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2015